In-Situ Testing of the Thermal Diffusivity of Polysilicon Thin Films

نویسندگان

  • Yifan Gu
  • Zai-Fa Zhou
  • Chao Sun
  • Wei-Hua Li
  • Qing-An Huang
چکیده

This paper presents an intuitive yet effective in-situ thermal diffusivity testing structure and testing method. The structure consists of two doubly clamped beams with the same width and thickness but different lengths. When the electric current is applied through two terminals of one beam, the beam serves as thermal resistor and the resistance R(t) varies as temperature rises. A delicate thermodynamic model considering thermal convection, thermal radiation, and film-to-substrate heat conduction was established for the testing structure. The presented in-situ thermal diffusivity testing structure can be fabricated by various commonly used micro electro mechanical systems (MEMS) fabrication methods, i.e., it requires no extra customized processes yet provides electrical input and output interfaces for in-situ testing. Meanwhile, the testing environment and equipment had no stringent restriction, measurements were carried out at normal temperatures and pressures, and the results are relatively accurate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermal Oxidation Times Effect on Structural and Morphological Properties of Molybdenum Oxide Thin Films Grown on Quartz Substrates

Molybdenum oxide (α-MoO)thin films were prepared on quartz and silicon substrates by thermal oxidation of Mo thin films deposited using DC magnetron sputtering method. The influence of thermal oxidation times ranging from 60-240 min on the structural and morphological properties of the preparedfilms was investigated using X-ray diffraction, Atomic force microscopy and Fourier transform infrared...

متن کامل

High Gauge Factor Piezoresistors Using Aluminium Induced Crystallisation of Silicon at Low Thermal Budget

This paper reports on polysilicon piezo-resistors that are fabricated at a low thermal budget using aluminium-induced-crystallization (AIC) of ultra-high-vacuum e-beam evaporated silicon films. By in-situ phosphorus doping of precursor amorphous silicon films e-beam evaporated at room temperature on aluminium layer, we are able to increase and control the gauge factor of the polysilicon films f...

متن کامل

Thermal Annealing Influence over Optical Properties of Thermally Evaporated SnS/CdS Bilayer Thin Films

Thin films of tin sulfide/cadmium sulfide (SnS/CdS) were prepared bythermal evaporation method at room temperature on a glass substrate and then annealedat different temperature with the aim of optimizing the optical properties of the materialfor use in photovoltaic solar cell devices. The effect of annealing on optical propertiesof SnS/CdS film was studied in the temper...

متن کامل

A thermal actuator for nanoscale in situ microscopy testing: design and characterization

This paper addresses the design and optimization of thermal actuators employed in a novel MEMS-based material testing system. The testing system is designed to measure the mechanical properties of a variety of materials/structures from thin films to one-dimensional structures, e.g. carbon nanotubes (CNTs) and nanowires (NWs). It includes a thermal actuator and a capacitive load sensor with a sp...

متن کامل

Accurate measurements of the thermal diffusivity of thin films and thin filaments using lock-in thermography

In lock-in thermography the thermal diffusivity can be obtained from the slope of the linear relation between the phase of the surface temperature and the distance to the heating spot. However, in the case of thin samples, the linearity is not found. In this work we identify heat conduction to the surrounding gas as the mechanism responsible for the lost of linearity. Accordingly accurate measu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Micromachines

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016